Novel Treatments for Major Depression

Dan V. Iosifescu, M.D., M.Sc.
Associate Professor of Psychiatry and Neuroscience
Icahn School of Medicine at Mount Sinai
Consultant in Psychiatry, Massachusetts General Hospital
My spouse and I have the following relevant financial relationships with a commercial interest to disclose:

<table>
<thead>
<tr>
<th>Consultant (Honoraria)</th>
<th>Axsome, CNS Response, Lundbeck, Sunovion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Funding (though the Icahn School of Medicine at Mount Sinai)</td>
<td>Alkermes, Brainsway</td>
</tr>
</tbody>
</table>
STAR*D: Current Antidepressant Medications Have Modest Efficacy

% remission

Meta-Analysis on the Comparative Efficacy of 12 New-Generation Antidepressants

117 RCTs (25,928 patients)

Odds Ratio – Fluoxetine as Reference

Favors fluoxetine

Favors comparator

Efficacy (response rate) drug vs. fluoxetine

Bupropion, Citalopram, Duloxetine, Escitalopram, Fluvoxamine, Miniprazapram, Mirtazapine, Paroxetine, Reboxetine, Sertraline, Venlafaxine

*p<0.05

Cipriani et al., Lancet 2009
FDA-Approved Antidepressants in the Last Five Years

- Vilazodone (2011)

- Levomilnacipran ER (2013)

- Vortioxetine (2013)
Vilazodone Blocks Serotonin Transporters and is a Partial Agonist of 5HT$_{1A}$ Receptors

1. Selective inhibition of serotonin reuptake
2. Partial agonist at 5-HT$_{1A}$ receptors

Only serotonergic neurotransmission is depicted here.
Vilazodone – Clinical Efficacy

Lower Rates of Sexual AEs than SSRIs, similar to BUP

- Whether the statistically significant differences observed at time points earlier than 8 or 10 weeks represent clinically relevant treatment effects is unknown.
- VIIBRYD should be taken with food. Taking VIIBRYD on an empty stomach can reduce plasma concentrations by approximately 50% and may diminish effectiveness.

Levomilnacipran-ER

- SNRI
- Two-fold greater selectivity for NE vs. 5-HT
- Starting dose = 20 mg/day
- Effective Dose = 40-120 mg/day

<table>
<thead>
<tr>
<th></th>
<th>5-HT</th>
<th>NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC_{50}, ng/mL</td>
<td>4.7</td>
<td>2.5</td>
</tr>
<tr>
<td>IC_{80}, ng/mL</td>
<td>22.4</td>
<td>10.1</td>
</tr>
<tr>
<td>IC_{90}, ng/mL</td>
<td>58.3</td>
<td>22.6</td>
</tr>
</tbody>
</table>

Inhibition of 5-HT and NE Transporters by Levomilnacipran
Levomilnacipran ER – Clinical Efficacy

Safety and Efficacy of Levomilnacipran

Number Needed to Treat or Harm vs. Placebo

Efficacy - NNT

Tolerability - NNH

NNT for response/remission, NNH for adverse events where incidence with levomilnacipran ≥ 5% and ≥ 2 times the rate for placebo as identified in product labelling (3), and NNH for discontinuation because of an adverse event, with 95% CIs, for pooled short-term studies comparing levomilnacipran vs. placebo. AE, adverse event; D/C, discontinuation; NNH, number needed to harm; NNT, number needed to treat.
Levomilnacipran ER: Impact on Functional Disability

- Improved functional outcomes (Sheehan Disability Scale) vs. placebo in 4/5 studies
- Only antidepressant with FDA approval for functional improvement

Vortioxetine - Serotonin Receptor Modulator at Clinically Relevant Doses

Clinical dose range gives 50-90% SERT occupancy

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Affinity (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT<sub>3</sub></td>
<td>1.1</td>
</tr>
<tr>
<td>5-HT<sub>7</sub></td>
<td>190</td>
</tr>
<tr>
<td>5-HT<sub>1B</sub></td>
<td>16</td>
</tr>
<tr>
<td>5-HT<sub>1A</sub></td>
<td>230</td>
</tr>
<tr>
<td>SERT</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Pehrson AL et al. Eur Neuropsychopharmacol 2012;
Vortioxetine – Clinical Efficacy

7/11 placebo-controlled trials were positive

Relative Efficacy/Safety of Vortioxetine

Number Needed to Treat or Harm vs. Placebo

Efficacy - NNT

Tolerability - NNH

Vortioxetine Effects on Cognition
Meta-Analysis of 3 RCTs

Efficacy on the DSST (Digit Symbol Substitution Test)

Also positive on the self-report PDQ (Perceived Deficits Questionnaire)

Treatment-Resistant Depression

• Failure to respond to 2+ antidepressant trials of adequate dose and duration
• Constitutes ~1/3 of patients with MDD
• Remission rates in TRD<<20%
• Contributes significant costs, morbidity, mortality
• Important Steps in Evaluation:
 – Diagnostic reassessment (unipolar vs. bipolar)
 – Psychiatric and medical comorbidities
 – Previous trials adequate in dose and duration?
 – Pharmacokinetic factors (metabolic inducers; rapid/fast metabolizers)
Promising Next-Generation Pharmacological Strategies for TRD

- Glutamatergic receptors modulators
- Opioid receptors modulators
- Scopolamine
- Anti-inflammatory agents
The Glutamate Synapse

Sanacora et al.
Nat Rev Drug Discovery 2008
Glutamate Signaling is Abnormal in Depression

- Acute stress increases glutamate signaling in cortex
- Chronic stress leads to alterations in glutamate receptors and synapses
- Glial cell loss in human postmortem cortex in MDD is related to glutamate toxicity
- Altered glutamate in MDD detected by brain H¹-MRS
- **Ketamine**: a dissociative anesthetic agent
 - Glutamate NMDA receptor antagonist
 - Rapid antidepressant effects
 - Abuse liability

RCT IV Ketamine vs. Saline (N=18)

Rapid Antidepressant Effect

Robust, rapid, and relatively sustained antidepressant effect of low dose ketamine, and response rates to ketamine in a double-blind placebo crossover trial in patients with treatment-resistant major depression.

Zarate et al. Arch Gen Psych 2006
RCT IV Ketamine vs. Midazolam (N=72)

Rapid Antidepressant Effect

Mean diff = 7.95 points
[95%CI: 3.2, 12.7]
P = 0.002

KET RR = 64%
MID RR = 28%

OR = 2.18, P = 0.006

Meta-Analysis of Ketamine Efficacy in TRD

Newport DJ et al. *Am J Psychiatry. 2015*

At 1 day

<table>
<thead>
<tr>
<th>Study</th>
<th>Odds ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazgranados et al. (85)</td>
<td>26.053</td>
<td>1.359</td>
<td>499.339</td>
<td>2.164</td>
<td>0.030</td>
</tr>
<tr>
<td>Lapidus et al. (84)</td>
<td>13.600</td>
<td>1.238</td>
<td>149.455</td>
<td>2.134</td>
<td>0.033</td>
</tr>
<tr>
<td>Murrough et al. (87)</td>
<td>4.833</td>
<td>1.578</td>
<td>14.803</td>
<td>2.759</td>
<td>0.006</td>
</tr>
<tr>
<td>Sos et al. (91)</td>
<td>15.294</td>
<td>1.610</td>
<td>145.305</td>
<td>2.374</td>
<td>0.018</td>
</tr>
<tr>
<td>Zarate et al. (88)</td>
<td>79.545</td>
<td>3.762</td>
<td>1681.833</td>
<td>2.811</td>
<td>0.005</td>
</tr>
<tr>
<td>Zarate et al. (86)</td>
<td>22.176</td>
<td>1.133</td>
<td>434.158</td>
<td>2.042</td>
<td>0.041</td>
</tr>
</tbody>
</table>

At 1 week

<table>
<thead>
<tr>
<th>Study</th>
<th>Odds ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazgranados et al. (85)</td>
<td>5.000</td>
<td>0.426</td>
<td>58.636</td>
<td>1.281</td>
<td>0.200</td>
</tr>
<tr>
<td>Lapidus et al. (84)</td>
<td>3.171</td>
<td>0.179</td>
<td>56.222</td>
<td>0.787</td>
<td>0.431</td>
</tr>
<tr>
<td>Murrough et al. (87)</td>
<td>3.937</td>
<td>1.149</td>
<td>13.492</td>
<td>2.181</td>
<td>0.029</td>
</tr>
<tr>
<td>Sos et al. (91)</td>
<td>4.706</td>
<td>0.950</td>
<td>23.302</td>
<td>1.898</td>
<td>0.058</td>
</tr>
<tr>
<td>Zarate et al. (88)</td>
<td>19.783</td>
<td>1.060</td>
<td>369.109</td>
<td>1.999</td>
<td>0.046</td>
</tr>
<tr>
<td>Zarate et al. (86)</td>
<td>3.222</td>
<td>0.176</td>
<td>58.849</td>
<td>0.789</td>
<td>0.430</td>
</tr>
</tbody>
</table>

Odds Ratio and 95% CI
Acute Behavioral and Hemodynamic Effects of Ketamine in TRD

Review of 205 IV ketamine infusions:

- No significant increase in psychotic symptoms
- Measurable small and transient increase in dissociative symptoms
- Transient increase in blood pressure

Next steps: Repeated IV Ketamine and Intranasal Ketamine

- Repeated dose IV ketamine – effective, but mean duration of improvement is 18 days
- Intranasal ketamine – effective, easier to administer
- Janssen is developing IN esketamine for TRD (currently in phase 3 studies)

Lanicemine (AZ6765) - a Novel NMDA Receptor Antagonist
Positive Phase II Results, Development Terminated in Phase III

Failed to Show Efficacy
• Memantine
• Lamotrigine
• Lanicemine (AZ 6765)
• MK 0657 (NR2B Antag)
• EVT 101 (NR2B)
• CP-101,606
• Org 26576 (AMPA)
• Riluzole

Still Early in Development
• D-cycloserine
• Rapastinel (GLYX-13)
 – Glycine site

Is there another mechanism that explains the effects of ketamine?
RCT of the NMDA Receptor Partial Agonist D-Cycloserine (1g/d) Augmentation for TRD

Heresco-Levy et al. *Int J Neuropsychopharm.* 2013
GLYX 13 Has Ketamine-like Effects in Several Animal Models of Depression

GLYX 13 Phase 2A Single-Dose Study
U shaped dose response: max effect at 5 and 10 mg

GLYX-13 at 5 and 10 mg/kg:
- Drug Effect: p<0.05
- Time Effect: p<0.0001
- Drug x Time: p<0.0001

Effect size of GLYX-13 after a single dose was roughly double that of SSRIs after weeks of repeated dosing

| GLYX-13 (one 5 mg/kg dose) = 0.41-0.49 | Abilify (6 wks daily dosing) = 0.36 |
| GLYX-13 (one 10 mg/kg dose) = 0.43-0.58 | SSRIs (6-8 wks daily dosing) = 0.20-0.25 |

GLYX 13 Phase 2B Repeated-Dose Study
Weekly IV dosing (5 mg, 10 mg, or PBO)

HDRS-17 decreased after GLYX-13 and increased after PBO

Burch et al. Poster presented at ACNP, 2014
6 weeks post GLYX-13 withdrawal
HDRS-17 did not return to baseline

GLYX-13 10 mg/kg weekly
performed less well than
other dosing regimens

No psychotomimetic adverse events

Burch et al. *Poster presented at ACNP, 2014*
Endogenous Opioids and Their Receptors - Abnormal in MDD

Sadness and chronic stress lead to alterations in opioid receptors neurotransmission\(^1\)\(^-\)\(^4\)

The opioid system: mu-, delta-, and kappa receptors (G protein-coupled)

mu-receptors: analgesia, reward, and dependence\(^2\)

delta-receptors: anti-depressant and anti-anxiety-like behavior\(^3\)

kappa receptors: anti-reward, dysphoria, pro-depression\(^4\)

Reductions in mu-opioid receptor-mediated neurotransmission during a sustained sadness state\(^1\)

1) Zubieta et al, Arch Gen Psychiatry, 2003.
3) Filliol et al. Nat Genet 2000;
Opioid Receptors Regulate Monoaminergic Systems Relevant to Mood Control

Buprenorphine

- Partial mu opioid agonist
- Kappa antagonist
- Used in addiction treatment
- Open label, positive data in refractory depression
- RCT of Low Dose Buprenorphine for Suicidal Ideation
 - N=88 patients with clinically significant suicidal ideation
 - Buprenorphine 0.1-0.8 mg/day (mean 0.44 mg/day) or placebo for 4 weeks
 - Buprenorphine superior to PBO for reducing suicidal ideation at 2 and 4 weeks
 - No withdrawal symptoms after treatment discontinuation

RCT of ALKS 5461 (buprenorphine + mu antagonist ALKS 33) in SSRI non-responders

Figure 4: MADRS Change from Baseline at Week 4

ALKS-5461 As Adjunct in MDD

- FORWARD-3 and FORWARD-4
- 814 patients in DB, PBO controlled 11 week trials in antidepressant non-responders
- Doses of buprenorphine/samidorphan (0.5/0.5 mg and 2/2 mg)
- Both doses not superior to PBO
- FORWARD-5 (1/1 mg and 2/2 mg) continues
A Kappa Opioid Receptor Agonist Increases Anhedonia and Depression

Selective kappa agonist U-69593 produces anhedonia (increase in reward threshold on FST) and depression (FST)

Todtenkopf et al 2004; Mague et al 2003
Selective Kappa Antagonists Normalize Reward and Produce Antidepressant-Like Effects

Intracranial Self-Stimulation Thresholds

Kappa Opioid Antagonist ANTI – Forced Swim Test

CERC 501 – a novel kappa opioid receptor antagonist currently evaluated as treatment for depression and anhedonia

The Cholinergic System and Mood Disorders

- Elevated cholinergic function is implicated in the pathophysiology of mood disorders.¹
- Physostigmine (an anticholinesterase inhibitor) exacerbates depressive symptoms in MDD and BD patients¹
- Muscarinic receptor gene polymorphisms are associated with an elevated incidence of depression.²
- Scopolamine (an acetylcholine muscarinic receptor antagonist), produces rapid antidepressant effects in MDD patients³

RCT of IV Scopolamine (4 μg/kg) in TRD (n=18)

• IV Scopolamine has rapid antidepressant effects¹

• Mechanism associated with increased mTOR and synaptogenesis² (like ketamine)

RCT of Oral Scopolamine (1 mg/d) Augmentation of Citalopram in MDD

Figure 2. Results of 2-Factor Repeated-Measures Analysis of Variance

*P < .05, **P < .01.
High Prevalence of Inflammation in Depression

Meta-analysis of Cytokine Levels in MDD

- Cytokines = non-antibody proteins released by cells on contact with antigens
- Cytokines induce depressive symptoms and HPA axis activation
- Depressed patients have high levels of cytokines

2) Yirimya R et al, Ann NY Acad Sci, 2000;
RCT of Adjunctive Cyclooxygenase-2 inhibitor Celecoxib in MDD

Figure 1. Mean ± SD of the two protocols on the Hamilton Depression Rating Scale scores. ns, nonsignificant; ** ≤ 0.01 and *** ≤ 0.001.

Akhondzadeh et al. Depression and Anxiety. 2009, 26:607–611
Adding NSAIDs to SSRIs is Associated with Worsening of Antidepressant-Like Effects

Antidepressants \(\rightarrow \) Cytokines \(\rightarrow \) p11 \(\rightarrow \) behavioral response

NSAIDs

Tail Suspension Test

Forced Swim Test

Warner-Schmidt JL et al. PNAS. 2011.
TNF-α Antagonist Infliximab – Effective Only for TRD Subjects with Pre-Existing Inflammation (high CRP)

Somatic Treatments for TRD

- Repetitive Transcranial Magnetic Stimulation (rTMS)
- Deep Transcranial Magnetic Stimulation (DTMS)
- Synchronized Transcranial Magnetic Stimulation (sTMS)
- Low Field Magnetic Stimulation (LFMS)
Right Unilateral Ultrabrief ECT + Venlafaxine in Geriatric MDD

www.mghcme.org
Continuation ECT + Venlafaxine + Lithium for Maintenance of Treatment Response

ECT Superior to Pharmacotherapy in Treatment-Resistant Bipolar Depression

Response Rates
ECT 73.9%
Pharmacotherapy 35.0%

Meta-analysis of Repetitive TMS (rTMS) for MDD

*Add-on therapy.
Abbreviation: rTMS = repetitive transcranial magnetic stimulation.
Deep TMS: Improved Remission Rates in TRD

Remission Rates Stratified by Treatment Resistance

Levkovitz et al. World Psych. 2015
Comparison of FDA-approved device treatments

<table>
<thead>
<tr>
<th></th>
<th>ECT</th>
<th>rTMS</th>
<th>Deep TMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy in TRD</td>
<td>++</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Adverse events</td>
<td>++</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Most concerning AE</td>
<td>Cogn. def. (som. chronic)</td>
<td>Seizures (rare)</td>
<td>Seizures (rare)</td>
</tr>
<tr>
<td>Duration of acute treatment</td>
<td>2-4 wks (3/week)</td>
<td>4-6 wks (5/week)</td>
<td>4-6 wks (5/week)</td>
</tr>
</tbody>
</table>
RCT of Synchronized TMS (sTMS) in MDD

- Frequency of stimulation = intrinsic alpha rhythm of the individual
- Low intensity of magnetic field
- Potential to become a take-home TMS device

Low Field Magnetic Stimulation

Change in Mood after LFMS

Change in VAS
- All subjects
- BPD
- MDD

Change in HDRS
- All subjects
- BPD
- MDD

Change in PANAS+
- All subjects
- BPD
- MDD

Change in PANAS-
- All subjects
- BPD
- MDD

Conclusions

- A variety of novel pharmacological and somatic treatments, **with new mechanisms of action**, currently undergoing validation for TRD.
 - Ketamine – replicated, rapid efficacy
 - GLYX 13 with promising data
 - Unclear why many other glutamategic strategies have failed
 - Early promising data for
 - Opioid agents: CERC 501, ALKS 5461
 - Scopolamine
 - Anti inflammatory agents: possibly helpful in subset with high inflammation
 - Somatic treatments:
 - ECT – gold standard; novel methods of delivery
 - rTMS - well tolerated, lower efficacy; DTMS – possibly improved efficacy for TRD
 - Many other under development: LFMS, sTMS, Onabotulinumtoxin A
- Vibrant area of research, other treatments under development
Thank you!